Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2309374120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590405

RESUMO

Self-healing slip pulses are major spatiotemporal failure modes of frictional systems, featuring a characteristic size [Formula: see text] and a propagation velocity [Formula: see text] ([Formula: see text] is time). Here, we develop a theory of slip pulses in realistic rate- and state-dependent frictional systems. We show that slip pulses are intrinsically unsteady objects-in agreement with previous findings-yet their dynamical evolution is closely related to their unstable steady-state counterparts. In particular, we show that each point along the time-independent [Formula: see text] line, obtained from a family of steady-state pulse solutions parameterized by the driving shear stress [Formula: see text], is unstable. Nevertheless, and remarkably, the [Formula: see text] line is a dynamic attractor such that the unsteady dynamics of slip pulses (when they exist)-whether growing ([Formula: see text]) or decaying ([Formula: see text])-reside on the steady-state line. The unsteady dynamics along the line are controlled by a single slow unstable mode. The slow dynamics of growing pulses, manifested by [Formula: see text], explain the existence of sustained pulses, i.e., pulses that propagate many times their characteristic size without appreciably changing their properties. Our theoretical picture of unsteady frictional slip pulses is quantitatively supported by large-scale, dynamic boundary-integral method simulations.

2.
Phys Rev E ; 103(5-1): 052802, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134208

RESUMO

We present a minimal one-dimensional continuum model for the transition from cracklike to pulselike propagation of frictional rupture. In its nondimensional form, the model depends on only two free parameters: the nondimensional prestress and an elasticity ratio that accounts for the finite height of the system. The model predicts stable slip pulse solutions for slip boundary conditions, and unstable slip pulse solutions for stress boundary conditions. The results demonstrate that a mechanism based solely on elastic relaxation and redistribution of initial prestress can cause pulselike rupture, without any particular rate or slip dependences of dynamic friction. This means that pulselike propagation along frictional interfaces is likely a generic feature that can occur in systems of finite thickness over a wide range of friction constitutive laws.

3.
Nat Commun ; 11(1): 5132, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046700

RESUMO

Modern geophysics highlights that the slip behaviour response of faults is variable in space and time and can result in slow or fast ruptures. However, the origin of this variation of the rupture velocity in nature as well as the physics behind it is still debated. Here, we first highlight how the different types of fault slip observed in nature appear to stem from the same physical mechanism. Second, we reproduce at the scale of the laboratory the complete spectrum of rupture velocities observed in nature. Our results show that the rupture velocity can range from a few millimetres to kilometres per second, depending on the available energy at the onset of slip, in agreement with theoretical predictions. This combined set of observations bring a new explanation of the dominance of slow rupture fronts in the shallow part of the crust or in areas suspected to present large fluid pressure.

4.
Phys Rev Lett ; 121(23): 234302, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576171

RESUMO

The onset of rapid slip along initially quiescent frictional interfaces, the process of "earthquake nucleation," and dissipative spatiotemporal slippage dynamics play important roles in a broad range of physical systems. Here we first show that interfaces described by generic friction laws feature stress-dependent steady-state slip pulse solutions, which are unstable in the quasi-1D approximation of thin elastic bodies. We propose that such unstable slip pulses of linear size L^{*} and characteristic amplitude are "critical nuclei" for rapid slip in a nonequilibrium analogy to equilibrium first-order phase transitions and quantitatively support this idea by dynamical calculations. We then perform 2D numerical calculations that indicate that the nucleation length L^{*} exists also in 2D and that the existence of a fracture mechanics Griffith-like length L_{G}

5.
Phys Rev Lett ; 119(14): 144101, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053320

RESUMO

Using an elastodynamic boundary integral formulation coupled with a cohesive model, we study the problem of a dynamic rupture front propagating along an heterogeneous plane. We show that small-scale heterogeneities facilitate the supershear transition of a mode-II crack. The elastic pulses radiated during front accelerations explain how microscopic variations of fracture toughness change the macroscopic rupture dynamics. Perturbations of dynamic fronts are then systematically studied with different microstructures and loading conditions. The process zone size is the intrinsic length scale controlling heterogeneous dynamic rupture. The ratio of this length scale to asperity size is proposed as an indicator to transition from quasihomogeneous to heterogeneous fracture. Moreover, we discuss how the shortening of the process zone size with increasing crack speed brings the front to interact with smaller details of the microstructure. This study shines new light on recent experiments reporting perturbations of dynamic rupture fronts, which intensify with crack propagation speed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...